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ABSTRACT

Numerical methods are presented for determining the stability of a

multiple autoregressive scheme, The question of stability is important in

prediction theory, but, furthermore, the methods for determining stability

are such that they yield information which is important when fitting time series

models to data,
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1, Introduction

Let {‘)5 (t),teZ} , Z the set of all integers, be a zero mean,
d-dimensional, covariance stationary time series with absolutely summable
autocovariance function R(v) = E(l( (t)l(T(t +v)), veZ, AT denotes the

transpose of the matrix A, Then the spectral density matrix,

(=t = RWe ™Y,  wdom,v]

VEa®

and the R(e¢) , are Fourier pairs,
R(v) = j_"“ f(u) V¥ aw, vez .
Formally define the inverse spectral density matrix by

fi(w) = Lé f-*(W) ’ WC[-". w],
4w

*
where A denotes the complex conjugate transpose of the matrix A, If thare

exist positive finite constants )‘l' )‘2 such that

Mg S (W) =1 (1. 1)

d 1

where 1 4 denotes the d-dimensional identity matrix, then fi(uw) exists and

has integrable components and we can define the covinverse matrices

ivw

Ri(v) = j_'" fifw) o "Yduw, vez .
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Further, (Masani (1966)) there exists an infinite order autoregressive repro-

sentation for {?5(15). tez}

z A_()X(t- )= 0, (1. 2)
j=0

where
£(t) = X(t) - EX®|X(€ - 1), X(t - 2),...),teZ ,

is the infinite memory one-step ahead prediction error and is a multiple whiie

noise series, with positive definite covariance matrix 2:‘ID R

E(gtlg (t+v) =8 Z_,

where 6J. k= 1, if j=k, and zero otherwise, Defining L to be the back-
.

ward lag operator, LJz_( (t) = l{(t - j), jeZ , we can write (1. 2) as

G_(L)X(t) = &(t),

where the complex valued matrix polynomial G_(¢) is defined by

Gu(z) = X Ao(j)zj o
j=0




The representation (1, 2) affords a representation of f(¢) :
1 -1, iuw -k i
(W) =5 G_(e DI G_ (¢, wed-m7].

Definition of Autoregressive Approximant

Let
1 -1 i -% i
fp(m) =E;Gp (e N)ZPGP (e m) , wel-w, 7]

where

( : j
G(z)= Z A _(j)=z°,
P j=0 P

and Ap(l), ene .Ap(p), % are solutions to the Yule-Walker equations,
P

P
j j - = e e » . 3
j’:o A (R(G - V) 6v’ Ozp , ve0,...,P (1. 3)

We call fp(') the p';h order autoregressive approximant to f(¢) (Parzen

(1975)). The use of the term autoregressive is natural since the p-memory

linear prediction error, s(p) , defined by

P ) =xm - EX®|%E- D, XE- D

~

is given by




(p) P . .
€ (t)=s T A_(GIX(t-])), A (0)=1

a°’ (1. 4)

(p),,, .(P)T
h =
whnere Ap(l,. XXN] AP(P) » and zp E(s (t)s (t))

are obtained from (1, 3).

Looking at autoregressive approximants from a prediction theory point

of view we see that for stability of predictions, it is desirable that we ke 2hle

(p)(t) .

to write X(t) as a linear combination only of past and present ¢

X(t)= Z B m(k)e(p)(t -k), teZ . (1. 5)
k=0 P77

Definition of Stationary Autoregressive Approximant

An autoregressive approximant of the form (1, 4) which has 2 represen-
tation, as a limit in the mean, of the form (1, 5) is said to be stationary,

The use of autoregressive approximants for d = 1 has become quite
widespread (Parzen (1974), Akaike (1971)). Parzen (1976) has recently
extended his method of determining the order of autoregressive approximants to
the multiple case, In Section 2 we develop theory and algorithms for
determining whether a given set of A(l),...,A(p), and Z determine a
stationary autoregressive approximant, This theory allows us to obtain two
further results:

(a) Autoregressive approximants for all orders from a covariance

stationary time series whose spectral density is bounded #bcve

and below by positive finite constants are stationary,

T




(b) Algorithms for determining the autocovariances R(0),...,R(p)
corresponding to the A(*) and X of a stationary autoregres-
sive approximant, These algorithms have several applications
in multiple time series analysis, two of which are given in
Section 3,

Finally, in Section 4 we give a numerical example of the algorithms

developed in Section 2,

2. The Algorithms

Given matrices A(l),...,A(p) and X , define the autoregressive

process {l((t), teZ} by

g AGIX(t - j) = e(t) , (2, 1)
j=0
where {s(t),tez} is a white noise process having covariance matrix ¥,
We develope algorithms for determining whether there exists a stationary
solution to (2, 1) in terms of only present and past 3(0) .
Lemma 1: (Hannan (1970, p. 14))
1f {s(t),teZ} is a white noise series, then given p initial values,
X(-p)y. .o+ X(-1) , the solution to (2, 1) is uniquely defined, If all zeros of tae
determinant |G(z)| are outside the unit circle, the solution is of the form
o

X(t)= T B{)elt-k), teZ,
k=0

where the elements Bij(k) of the B(k) converge to zero exponentially as




The B(°) can be obtained by comparing coefficients of zJ in

¢ lz) = HEz) = = B~
k=0

Method 1 (via the Schur matrix)
Method 1 consists of determining whether the zeros of |G(z)| are

outside the unit circle, Writing |G(z)| as a polynomial of degree pd,

d .
lG(z)]| = YG)2
j=0

(see Robinson (1967), p. 162 for example) we can implement

Theorem on the Schur Matrix (Schur (1917))

n .
The zeros of the polynomial g(z) = X a(j)z) are outside the unit
j=0
circle if and only if the matrix S defined by S = (Sjk) o

v
S. = Z [a(j-1-4¢)a(k-1-4)-am+1l+Li-jla(n+l+d-k)],
ik 4=0
jok=l,..,n, v=min(j -1,k - 1), is positive definite, The matrix S ic
called the Schur matrix of the polynomial g(e¢). It is particularly useful

when d =1, since then (Pagano (1973)), if the zeros of lG(z)' are all ouside

the unit circle,

ssl.Llr | (2 2)

T
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where l"p is the p x p Toeplity matrix having R(j - k) in tte jth row and
kth column, while 02 = E(ez(t)) . Unfortunately there appears to be no vector
analogue of (2, 2),

To decide whether S is positive definite one may calculate its modified
Cholesky decomposition (see Wilkinson (1967)). Then S is positive defir. te
if, .and only.if, the diagonal elements of the diagonal matrix in its modified
Cholesky decomposition are positive,

As mentioned above, method 1 for d = 1 produces the autocovariances

of X(°¢), while for d > 1 it does not. The methods given below do give tk>

R(*) . They are based on the following lemmas,

Lemma 2 (Hannan (1970), p. 19)

Let R(v) = E()i(t))ST(t +v)), veZ , If the zeros of ,G(z), are all

outside the unit circle, then the R{(*) sequence satisfies

Z, v=z0, (2. 3)

I MO

i AR - v) = bv,o

Lemma 3

If £ is positive definite, then the zeros of IG(z)| are all outside
the unit circle if, and only if, I‘p is positive definite, where I‘p is the
P X p block Toeplitz matrix having R(j - k) in the jth row and kth coluran

of blocks, i.e,, I‘p = Toepi(R(0),...,R(1 - p).

m— - R TRl R A A A L
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Hannan (1970), p. 329, shows sufficiency, while Whittle (1963) shows
necessity,
Theorem: Bounded Spectra Guarantees Stationary Approximarts

If {X(t),teZ] is a covariance stationary time series whose spectral
density matrix satisfies (1. 1), then the autoregressive approximants for
p 21 defined by (1,4) are stationary,

We show that Zp and I‘p are positive definite for p 21, thus
ensuring that the zeros of | z A (j)zjl are outside the unit circle,

j=0 P

T T. 'LT

Define the nonnull, pd-vector ﬁ = (il . ves o ), where

.

ﬁj is a d-vector. Then I‘p is positive definite if, and only if, iTl‘pﬁ >0

for all such ﬁ . Now

p
£Tt= = 4TRG -1,
P k=1 ™
P T (v iG-k)w i
= T ¢, I f(w) e du | 2
J - k
iy k=1 .

n *
= [+ C (@H(WC(y dw,

P .
where C(w) = Z ﬁj ¥ is nonnull, Now (1. 1) implies
j=1
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T ok
LTtz Iy S (WC(W duw

~

p .
\, T g'.rgk j"ﬂ ll-kw
jok=1 ) -

A =-R_,
PP P
-1
¥ =R(O)-RTR ,
p PP P

. . . e o T T

where A =(A (1), ... . A (p))T ,and R_= (RT(I). coe « R7(p)) . Now
p p . . p p . .

I‘p and I"pH are positive definite, and by the clockwise rule of matrix

determinants,

R(0) RT T
P

r -
It ol =
R r
P P
T -1
= Irpl |r¢0) - R TR,

T .
N

Since Ep is a covariance matrix, the proof is complete,

T e
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Method 2 (via the Yule-Waiker equations)

Method 2 consists of solving (2, 3) for the R(¢) and then checking the
resulting I‘P for positive definiteness, The transformation from the A(°) to
the R(*) is not obvious (see Quenoville (1957)). The symmetry of R(0) and
the noncommutativity of the R(¢) and A(°*) seems to rule out a solution of
(2. 3) in terms of the matrices themselves. The matrix notation in {2, 3)
disguises the fact that there are in fact (p + l)d2 scalar equations in the firc*
p + 1 matrix equations, Further, the symmetry of R(0) and = actually

2
leaves 8 = pd + d(d + 1)/2 distinct scalar knowns and s unknowns in these
equations, namely

p d
GR f Ly o L4
jEO f::l AmL(J)RLn‘J v) 6v, Ozmn ! (2. 4

for v=0,...,p; mmn=1,..,,d,
Define the vec operator, vec (C), on the (n x m) matrix

C-= (glloocvgm) by

T. . ~T.T
vec (C)_(El : s 0 : ('Enl) ?

and the lvec operator, lvec (C), as the vec operator on the lower triangula:

portion of C, Then define the (s X 1) vectors r and g by

=T . TenT

g = (ET(O)E cee s gT(p))T ,
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where

Iy

llvec R(O) ,  j=0
\

r(j) =
,vec ®RGY J=hLieeeup
lvec (Z) , j=0

gl) =
2 2 ? j=1....pp 1 4

d

where Qn denotes the n-vector of zeros. Then the equations (2. 4) can be

written

W£=£ R (2.5)

where W is an (s X 8) matrix determined as follows.

Since R{-v) = RT(v) , we have

RJk(v) » v = I’o-c'p
- = - - 2. %
Ryl = Ryt , V= ePraaa,=i (2. %)
Rm m (0) ’ v=0 ’
1 2

where ml = max (j, <) , m, = min (j,k) , The row number of Rjk(v) in r

is given by

(k-1d+j-k(k-1)/2 v=0
ijk(V)= )
did+1)/2+(v-1)d +(k-1)d+j , v=1,.,.,p

»k=1,,..,d




T
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Thus to determine W :
{a) Set W initially equal to zero
(b) For fixed m, n, v, j, 4 in (2.4) :
(i) The row number of W correspondingto m, n, v

is given by t1 = 1mn(v) .

(ii) Find by (2, 6) the indices {', n', u' of the represen-
tation Rvn,(u') of RLn(u) ,U=j~v, for nonnegative
u',

t

e . -2 t
(i) Add A_,(j) to th ) where t, =1, ,(a').

If (2,5) cannot be solved uniquely for - r , then the process is not
stationary, If (2,5) can be solved, it is not difficult to reorder the elements
of r to form R(p),...,R(p), and I‘p , and to check I‘p for positive

definiteness,

Note that it is possible to solve (2, 5) uniquely for r while Pp is not

positive definite, For example, let p=d =1, Then (2.5) becomes
R(O)) ( of
R(1) 0

2
If |a|]>1 and ¢” >0, then I‘lzR(O)zoZ/(l-az)<0.

W e ol ma
, - S
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Method 3 (iterative)

If d is large, the value of 8 may prohibit the use of Method 2 unless
one uses an equation solver to solve (2, 5) which does not require storage of
the entire W matrix, Thus we propose an iterative method for calculating
I"p which requires much less storage than the Yule-Walker equation method,

By lemma 1, if the zeros of |G(z)| are all outside the unit circle,

we can write

G"(z) =H(z)= = B(k)zk, (2.7
k=0

where the (4, m)th element of B(k) converges exponentially to zero as
k -=, i.e,, there exist constants C # 0, p such that for k sufficiently

large,
B, 00l sco®,  c|<=, |o]<1.

Thus we can obtain R(0),...,R(p) by

-]

R(vi= Z BRIZB (k+v) , v=o,....p. (2. 8)
k=0

The B(*) can be obtained by solving the block triangular system of eqQuaticns

G(z)H(z) = Id . (2.9)

{
i
i
|
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Equating coefficients of zj in (2, 9), we have the difference equation with
B(0) = Id .
min(4, p)
z A(j)B(L-3j)=0 R t>0. (2. 10)
j=0

R(v) can be approximated by

-V

BZB (K +v) , Vv=0,00.,p. (2.11)

TMZ

R =
M (v) .

Then we have the following,

Convergence Theorem for RM(')

Let ||C|| denote a norm of an (n X n) matrix C =(C._). Thena

jk
necessary condition for A(l),...,A(p), and Z to define a stationary auto-

regressive approximant of order p is that

IR - R, =0y,  Iv] <1,

uniformly in v=0,...,p.

Proof:

From (2, 8) and (2,11) we have, if the zeros of lG(z)I are all outsice

the unit circle,




-
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@

R -R li=ll 2 Bz Tx+ v
k=M-v+l

-]

s = Bl Izl BT + v

k=M-.p+l
s Cl z P .
k=M-p+l
2.2 2v

where Cl = “EHC dp , and M 2K for some integer K, Then letting

s=k-(M-p+1), we have for M 2 K, independent of v,

R - R 0l = 0" = o, WM.

Thus the iterative method consists of the following steps:
(a) Find B(0),...,B(p) and Rp(O). cen .Rp(p) by (2,10) and (2, 11),
(b) Given B(M - p),...,B(M) and RM(O), oes ,RM(p) » find

B(M + 1) by (2,10) and the RM+1(°) by
R (vV) =R  (v) +B(M+1 V)XBT(M-l-l) v=0
M+1 M - ’ FEVeeesp o
(c) Iteration stops if for a given &,

Rygyy @ - Ry ()]
TR g1

<6. V=°..o..P.

If not, return to (b).

b, -
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If the algorithm does not converge, the approximant is not stationary,

If convergence is achieved, Fp can be checked for positive definiteness,

Comparison of the Methods

(a) In most cases knowledge of the R(*) is desirable, so methods
2 and 3 seem preferable,

(b) To write a computer program of method 2 requires approximatel;
p2d4 storage locations, while method 3 requires 3(p + l)d2
locations (A(1),...,A(p),Z,BM - p),...,B(M), and
R0 Ry (P))

(c) Preliminary empirical evidence indicates that the value of M
necessary to attain convergence in method 3 is not large,

(d) Method 3 does not have the problem of the matrix W of
method 2 being ill-conditioned, However, method 3 is an
iterative method and may suffer the difficulties of any iterative
algorithm,

Thus, unless the values of p and d are quite small, method 3 app=ars

to be the most useful algorithm,

3. Applications of the Algorithms to Obtain R(e)

An Application to Scalar Mixed Time Series

Consider the scalar mixed autoregressive moving average process,

{X(t),teZ} , of order (p,q), defined by
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P q
Z aj)X(t-j)= Z B(k)e(t~k), teZ ,
j=0 k=0

where {e(t),tcZ} is a series of uncorrelated random variables with zero
2
mean and variance 0 , and the zeros of the complex polynomials

alj)z
0

™Mo

g(z) =
j

q
>z B (k)zk
k=0

h(z) =

are outside the unit circle, The information matrix (Whittle (1953)) of the

parameters g = {afl),...,o(p)  and B = (8(1),...,B(a)" is given by (sce

Hannan (1970), p. 392)

aa af

(193,T i

where

e“’ - kK)w

1 n i
(Iaa)jk-?r -r.w IE(Biw)Iz dw, Jhk=1l,.00,p
P e ———————

O R -

i i e A,




/ 1 i(j'k)w
(133) k =2 -f:rvr > iw dw ,
) |n(e**)]
i(j-k)w
a®y. = LT e dw ,

19

k=1,...,9

Consider the two dimensional autoregressive process 5(0) of order

m = max (p,q) defined by

G(L)u(t) = e(t) ,

where

alt) = (a6, uy®) , () = (ett), et

and

G(z)= Z zj
j=0 | 0 g'()
g(z) O
0 h(z) '
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where c'(j) = a{j) for j=0,...,p, and zero otherwise, and 3'(j) = B(j)
2
for j=0,...,9, and zero otherwise, Assume E[¢ (t)] =1 and thus

Eletre 0]=11" ,

where 1 is the two dimensional vector of 1's . Then the spectral density

fu(°) of the u(e¢) process is given by

~

=% iw

W =55 G G . wd-m, 7]

- 1 1 7]
. 2 . i
lg(ew)l g(ew)h(e 1
1
2n . 1
-1 i iw (2
gle” e |ne'|
Defining l
R .. (v= fﬂ f (w)eivw du
g;Jnk - E‘;jok ’

where f . (4) denotes the (j,k)'" element of f (u), we have

~' ’ ~
et g 1t e oo Tt o e ———
Wpn T -
1.."_,;.@@\
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a . )
(I a)_)k=Ru;l,l(J-k) ' J,k:l’.-.’p’ (3.1)

38

(I k) s j.k=1.-...q. (3¢Z)

)jk = rsg;z' Z(J -

N
jk u;l, 2

(J"k) [ j=1900o:p| k’-l,....q . (303)

Thus to find I in a convenient way, without any numerical quadrature, we
can find the Ru(-) by the methods of Section 2, and form 1 from (3.1), (3.2),
(3.3). This is of particular importance when estimating the parameters of

the gcalar mixed process (see Hannan (1970), p. 390),

An Application to Constrained Autoregressive Estimation

Given a sample x(1),... .ﬁ(T) » consider the problem of efficiently
estimating the autocovariance sequence R(°*) of a multiple autoregressive
process X(¢) where the coefficients g, = vec (A(l) . ... -A(p)) are subject

to the linear constraints
(3. 4)

Hannan and Terrell (1972) corsider probiems of a similar nature,
Efficient estimates A(l),...,A(p), and T of A(l),...,A(p) and T
(ignoring the constraints) are obtained by solving the Yule-Walker equations

(2. 3) with

G B ;»u.«,«e‘mW Mt St T ek




22

T-v T
= ’.f.(t)f (t +v) , vs0,..,.,P

1
R,r(v) =7

t=1

A Q,Q a
2
replacing R(v) . Then an estimator I of the information matrix 1

of a, is given by (see Hannan (1970), p. 329)

where Pp = TOEPL{RT(O),. . ,RT(I -p)} and
C ® D denotes the Kronecker product of the (n X m) matrix C = (Cjk) and

the (r x s) matrix D = (Djk):

CllD clmD
C®D= ° . .
c .D CcC D
L nl nm

Then an efficient estimator a9, of 2, is given, by applying the theory of

optimization under linear constraints (Pagano (1974)), as the solutior of the
normal equations
T ~ (12&2 ~ _ T ~ azaz L

(B 1 B)s.gl Gy o

Then to obtain efficient estimators R(1) ,...,R(p) of R(0),...,R(p) subject

to (3. 4), one can use the methods of Section 2.

e A €V o e he e m rvem e e
. ~
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Numerical Example

Let p=2,d=2, and

- - -
-, 2580 -. 1429 . -, 1471 , 1280
All) = A(2) = '
[ . 5572 -. 8637 , -,4732 . 3305
| g B
-
2. 6034 . 9053
T = R
.9053 2,1450
J
Method 2 gives the exact values of R(*)
3,0 1.0 ﬁl 1.0 -. 50
R(0) = : R(1) =
1.0 4,0 . 50 2.0
L | |
' .50 .10 |
R(2) = \ .
.05 . 60
o
5

After 9 iterations, method 3 gives values, correctto 6 =1 x 10

’ 2,9999974 1, 0000470 -\.
R(0) =
1, 0000470 4, 0000683




-
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! .
| «9999955 -.4999354
R(l) =
. 5000751 2,0000473
| .4998513 . 1000909
R(2) = .
. 0499245 . 5999987
o

Thus for this second order autoregressive process, one needs an approxi-
mating moving average process of order 11 to obtain five place accuracy.

{Calculations performed on a CDC-6400,)
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